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Abstract 

Results of a search for evidence of chaotic trajectories in 

simulations of beam storage with a "weak-strong" beam-beam interaction ara 

presented. The storage ring tunes (3, ye) and the beam-beam strength 

parameter Avare varied, and chaotic trajectories are found where the 

beam-beam spread Av contains low-order resonance intersections. Chaotic 

trajectories are not found if v,=v. 
Y 

Variation of tune shift indicates that 

the degree of chaotic behavior does not directly depend on the tune spread 

but upon the relative location of the resonance intersection with respect 

to the tunes. 

a Operated by Universities Research Association Inc. under contract with the Unlted States Department of Energy 
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1. 1ntroducti.t 

In a previous paper', we presented results which showed evidence for 

chaotic trajectories in a simulation of the beam-beam interaction with the 

parameters (Vx=.245, Vy=.12, Ati.011, where Vx, Vy are the machine tunes 

and Av is the beam-beam tune shift. Other cases had not shown these 

chaotic trajectories. In another set of simulations', tune modulation was 

added to the beam-beam interaction, and it was found that chaotic 

trajectories could appear if the modulation amplitude wwere sufficiently 

large. 

In this paper we change the parameter values (vx, v y, Av) of the 

unmodulated two-dimensional beam-beam interaction and determine conditions 

for the appearance of chaotic trajectories, and the density of these 

chaotic regions. 

II. Simulation Procedure 

In our simulations we approximate particle circulation around the ring 

as the product of two transformations: a linear transport around the 

storage ring followed by a nonlinear beam-beam "kick" at the interaction 

area. 

Transport around the ring can be represented by 2x2 matrices for both 

transverse (x and y) dimensions: 
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il),= [ -;I :Irla_ (1) 

x 

In this linear transport x and y motion are decoupled. vx, u yr B,, By are 
. . 

the usual Courant-Snyder tunes and beta-functions'. The beam-beam kick can 

be represented as 

x 

0 

: 

X’ After 

1 

4nAv x 
- -- Fx(x,y) 

B x 

(2) 

with a similar expression for y, y'. 

The product of these transformations is equivalent to'integration of 

the equation of motion: 

4sAv 
x F x" + Kx(s) x = -- x (x,Y) 

% 
x dp(s) (3) 

s, the distance along the storage ring, is the independent variable, &p(s) 

is a periodic delta-function, and K x,y(s) is the focusing function. 

In the present report we choose parameters which approximate the 

conditions' in: the Tevatron: g::g;:2 m, where the l indicates values 

matched to small amplitude motion, and we choose 



1 _ e -(x2+YZ)m2 

Fx = FY = --- (x2+y2)/2u2 
(4) 

with U=0.0816 mm, which is the nonlinear force due to a round, gaussian 

charge distribution of rms radius o. 

Tune modulation can be added to the simulations by making vx, v 
Y 

periodic in time'. In the present paper we choose not to do this and -- 

explore the properties of the variables u x, Av. vY' 

III. LT-cst for Chaotic Trajectories --.--- 

In reference 1, we developed a useful empirical test for the 

appearance of chaotic trajectories; this is the repeatability test. In 

this test a particular trajectory is tracked forward for some large number 

of turns of the linear transformation and beam-beam kick and then the 

trajectory is reversed in time and tracked backward numerically (reversing 

the velocity) and forward and return positions are compared. A non-chaotic 

trajectory shows limited position error difference growths that is the 

error A increases with the number of turns N as A S A,N 312 (or even as 

slowly as Ao~ l/2 in some special cases'), where A0 is a single turn error 

magnitude (*lo-a6 double precision). 

Chaotic trajectories develop substantially larger errors. Errors grow 

exponentially following 

A s A0 eaN 
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where a is a trajectory dependent parameter equal to the "Lyapunov 

Exponent" of nonlinear dynamics theorys. In nonlinear dynamics, "chaotic 

regions" are distinguished by the characteristic feature that nearby 

trajectories diverge from each other exponentially, with the rate of 

divergence given by the Lyapunov exponent. 

In the repeatability tests of reference' particle trajectories fell 

quite naturally into one of two categories: 

Category I: "repeatable" trajectories which develop errors of order 
10-s' In a 100,000 turn reversability test and of order lo-" after 100 
million turns. 

Category II: "chaotic" trajectories which exponentially develop 
errors of order unity after Cl00 thousand turns with measurable Lyapunov 
exponents of s.001. 

Figures 1 and 2 show results of reversability tests for sample 

trajectories of both types. The clear empirical difference between them 

permits us to separate phase space into "chaotic" and "non-chaotic" 

regions. 

In reference 1, for our case "B" (vxz.245, vy=.12, Av=.Ol), it was 

found that 25% of a randomly selected sample of trajectories were chaotic. 

Other cases: (Case A: Vx=Vy=.245, AS.01) and (Case C: vx=.3439, 

Vy=0.1772, A&.01) showed no chaotic trajectories. - Empirical 

investigations indicate that chaotic trajectories can occur at the 

intersections of "low-order" resonances and do not occur when the tunes V X’ 

Vy are equal. 

We want to point out that a chaotic trajectory is clearly associated 
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to a loss of "phase" memory, but we have "0 indication of amplitude growth. 

Actually we have evidence that for the period of time being simulated the 

chaotic trajectories remain confined to bounded domains in the phase space, 

with the exception possibly when tune~oscillations are added2. 

IV. A Search in Tune Space (v-, -- V..) for Chaotic Trajectories 
J 

In this section, we report results of a more detailed search for 

chaotic trajectories. In this search, the tune shift A~=.01 and the other 

parameters of the beam-beam interaction (the strong beam size and shape, 

and the matched betatron function of the weak beam g::gL.&) are kept 

constant while the tunes Vx, V 
Y 

are varied. These tunes are chosen near 

the intersections of low-order resonances; the intersections are at 

V 
x + Av/~, Vy + AV/Z so that they are in the center of the beam-beam tune 

spread. A 100 sample trajectories are tracked forward 100,000 turns and 

returned, and their trajectories are inspected for chaotic behavior by the 

"repeatability test". 

The initial coordinates (x, x1, y, y') of these sample trajectories 

are randomly chosen within a 4-D phase volume weighted by a 4-D gaussian 

distribution determined by the parameters u2:ax2.u a and gx$3 
Y ' Y' 

as defined 

above. Coordinate sets with an initial coordinate greater than three 

standard deviations are discarded. The same initial particle positions 

were used in all of the simulations , and particle motions are initiated at 

the center of the interaction region. 

The results of 133 cases are displayed in Table 1, where accumulated 

errors between initial and return particle positions are tabulated. 

Trajectories separate naturally into two groups: 
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1. "non-chaotic" - with errors ~10~'~ 

2. "chaotic" - with errors of order unity; an error cut off of lo-" 
is used to distinguish these. 

There are a few with "intermediate" properties, with test errors 

between lo-" and 1O-'9 . Most trajectories in this intermediate region are 

found to be "chaotic" with smaller Lyapunov exponents in a longer test. We 

therefore choose a boundary of IO-" error to separate "chaotic" from 

"non-chaotic" regions. 

The results show that chaotic trajectories do occur in many of the 

test cases. In the most "chaotic 11 case 31% of the test trajectories are 

chaotic. 

A more careful analysis indicates that the cases with larger numbers 

of chaotic trajectories appear at the intersections of the lower order 

resonances. A resonance is determined by a relationship between the tunes: 

n “x +mV 
Y q P 

where m, n, and p are integers. The "strength" of a nonlinear resonance is 

determined by the "order" fi of the resonance which, for our round beam-beam 

force is given by 

Cl :Inl+lm\ if both m and n are even 

n = 2 $l]+lrn) if m and/or n are odd 

The appearance of only even orders is a result' of the fact that our 

beam-beam force is an even function of both x and y. 
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In our data set, which is confined to the tune region O<Vx<1/2, 

O<vy<1/2 and avoids the diagonal Vx:V 
Y’ 

in the present discussions the 

lowest order resonances are fourth order: 

4vx=1, 4vy=1, 2vx + 2” = 1 
Y 

Sixth order resonances are: 

3vx:1, 6~~~1, 3Vy.l, 6Vy:1 

4Vxf2Vy.l, 4vy+2Vx=l vx+2vy= 1 

2VxfVy: 1 vx-2vy:o vy-2vpo 

These resonances (4th and 6th order) are shown in Figure 3. Large 

numbers of chaotic trajectories (>9%) appear in each intersection case 

tested. All cases with more than 7% chaotic are included within this set 

except for Vx:.37, Vy:.12 which is at the intersection of a fourth order 

and five eighth order resonances (14% chaotic). 

Including eighth order resonances adds another set of intersections 

with fewer chaotic trajectories. Intersections of sixth , fourth or eighth 

with eighth order resonances have between 0% and 7% chaotic trajectories 

(with a single "fourth-eighth" case at 14% as noted above). Figure 4 shows 

these additional intersections. We note here that c cases (except 2) 

with more than 1 chaotic trajectory in our test cases are included within 

Figures 3 and 4. The exceptions are intersections of fourth with tenth - 

order resonances (3% and 2% chaotic). 

In figure 5 we include higher order resonance intersections (up to 

twelfth). Most of the additional cases show no "chaotic" trajectories, - 

although a few have a single "chaotic" case, with the two exceptions 

mentioned above. 
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We conclude this section with the summary that chaotic trajectories 

can appear with large density at the intersections of low order resonances, 

and that their density rapidly decreases with the increasing order of the 

resonances. 

The evidence supports the empirical hypothesis that the volume of the 

chaotic region is proportional to the intersecting volumes of the resonant 

region. We believe that the chaotic regions are the same as the stochastic 

layers of many non-linear resonancesa. 

V. Dependence of the density of chaotic traJectories on tune shift ------ - 

We repeated some of the above test cases with A":.02 and Av=.OO5. The 

tunes vx, Vy were adjusted to keep the resonance intersection in the center 

of the spread. We find no dependence on tune shift. 

Figures 6 and 7 display the 74 casees with A"=.02 and the 75 cases 

with A"=.005 used in this test, and they can be compared with the Au=.01 

cases of figures 3, 4, and 5. The differences are less than a strictly --- 

statistical random error pattern; this is related to the fact that the 100 

initial particle positions are the same for all cases. 

This result is in agreement with the hypothesis that the density of 

the chaotic region is related to the widths of the intersecting 

resonances*. It is a fact that for the beam-beam interaction, resonance 

width does not depend directly on tune shift to lowest order, but does - 

depend on the relative location of the resonance with respect to the tune 

spread. 
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VI. Resonance "Intersections" with v .v - 

In the previous sections we omitted consideration of cases with Vx=V . 
Y 

We now report results of six such cases with k.12, .1617, .195, .245, 

.3283, .395 (l/8, l/6, l/5, l/4, l/3, and 2/5 resonances) and with AVz.01 

in all cases. No chaotic trajectories were observed. 

This may seem somewhat unexpected since these cases contain low order 

resonances and might be expected to contain chaotic regions following the 

general discussion above. However, as has been proven6, the case vx=v 
Y 

has 

intrinsically different dynamics from vxtv y. It has been proved that with 

Vx=Vy and a round beam-beam force there exists an invariant of the motion, 

which in this case (Bx=By) is simply an angular momentum: 

PO = x’y - y’x 

(The theorem of reference 6 is more general.) 

This means that the dynamics of our vx:vy cases contain one less 

degree of freedom and is therefore intrinsically one-dimensional (1-D) 

motion. This is intrinsically different from the 2-D motion with vxfv 
Y 

. In 

particular the intersection of multidimensional resonances cannot occur in 

Vx=Vy cases, only 1-D "single resonancesn actually occur. Similarly an 

extensive search for chaotic trajectories in the 1-D case obtained from 

Cl), (21, (3) and (4) with the truncation y=O has been completely negative. 

The above discussion and our observations confirm the hypothesis that 

the intersection of low-order 2-D resonances within the tune spread is 

necessary and sufficient condition for the appearance of chaotic 

trajectories. 
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VII. Chaotic Trajectories with O<v c.5, .5<V cl.0 

In the above analysis we have only considered cases in the tune region 

00Jx<.5, O<Vy<0.5. An obvious symmetry connects these cases with similar 

cases in .5y<l.O, .5<Vy<l.0. The behavior in the quadrant OQy<0.5, 

.5<Vx<l.0 is less obvious so we have undertaken reversability tests at the 

crossings of fourth and sixth order resonances. The results are displayed 

in Figure 8, which can be compared with Figure 3. 

An exact symmetry between the cases can be noted, indicating that the 

addition of 0.5 to one of the two tunes leaves the chaotic properties 

unchanged. In particular we note that the line Vx:vy+l/2 (2Vx-2Vy.l) 

contains no chaotic trajectories, which suggests that an invariant of 

motion exists in this case as in the Vx:Vy case, providing 1-D motion. 

This case was not specifically covered in the theorem of reference 6. 
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TABLE 1 (concluded) 

Lowest 
Order Inter- Number 
Lines section Failed 

8 10 1/5d/l5 

(19 out V5J/20 

of 96) 2/5,2/15 

2/5,3/20 

2/h 7/20 

3/11,w1 

3h J/11 
4/11,1/u 

5/11 J/11 

5/11,4/11 

3/13,1/13 

4/13,u13 

4/13,3/13 

5/13,2/13 

6/13,2/13 

6/13,5/13 

4/15,1/5 

7/15,2/5 

9/20,1/5 

10 10 l/5,2/15 

(13 out 2/N/15 

Of 80) 2/5,4/15 

3/13,2/13 

5/K&1/13 

6/13,4/13 

4/13,1/15 

7/15,1/5 

7/15,2/15 

4/17,1/17 

5/17,3/17 

7/17,6/17 

8/17,2/17 

0 

0 

0 

0 

0 

1 

1 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

N value 
to .** 17 18 19 20 21 22 23 

89 10 1 

88 11 1 

2 86 10 1 1 

18611 1 1 

2&1211 

&I 10 1 

88 10 1 

86 13 1 

1 82 14 2 

184 14 1 
1(21) 88 10 1 

t3g 10 1 

2a611 I 

1 e4 14 1 

8513 11 

85 14 1 

89 10 1 

87 12 1 
l(1) 84 14 1 

89 lo 1 

87 11 1 1 

& 10 1 1 

87 12 1 

1st 14 1 

86 13 1 

88 11 1 

87 12 1 

87 12 1 

1 87 11 1 

8g lo 1 

87 12 1 

87 12 1 
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Failed krticles 

21 

14 

1 

(21) 
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Tune space shouicg all lines of order 4 rad 6, and the number of,chaotic 

trajectories (out of 1CO) at the 13 intersections; 5 zce between lines 

whose lowest orders 2me 4 znd 6; 8 axe between lines whose lowest &ders 

are 6 snd 6. The Lcth ordeclines ee dsrkened. 

1 
7 



Figure 4 
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Tune space showing ~2.1 lines of orders 4, 6 w.1 8, and the amber of chaotic 
trajectories (out of 100) at the 55 intersections between 8 th order lines ad 
iith order (3), 6th order (36) and 8th order (16) lines. 



Figure 5 

Tune spce showing all lines of orders 4, 6, 8, and 10, and the nunber of chaotic 

trajectories (out of iO0) at 49 intersections betbieer 10th order lines and ' 
4th order (E), 6th order (a), 8th order (lg), 10th order (13); and 6ne i&ersection 

betueer? a kth order line and a 12 th order line sketched in. 
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?igre 6 ?ue spce s~oi-~~ ali lbeE of Order 6 or less, 72;; 

ihe~numbez of non-reversible pzticles at 74 

intersections for Al, = 0.02 
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FigcrE 7 3unne spax showiz~ a11 lines cf order 6 ox less, , 
pmd,the number of non-reversible particles at 

75 intersections for A3= 0.005 

1 1 
3 5 3 7 
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Figure 8 

Tune sp;ice for l/2 4 vx 4 1 showing all lines of order 4 (darkenedj snd 6; 

and the number of chaotic trajectories (out of LOO) ?t 16 intersections: one 
is between lines whose lowest orders ;rre k and 4; 7 are between lines whose 

lowest orders ae 4 and 6; 8 we between,lines whose lowest orders are 6 and 6. 
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